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We consider a lattice model of a binary mixture in which each molecule of 
one component can form zero, one, or two bonds to molecules of the same 
species on neighboring vertices of the square lattice. We allow the energy of 
molecules with two bonds to depend on the valence angle, thus generalizing 
the first paper in this series. If "s t ra ight"  polymeric configurations are 
favored over all others, then a phase transition occurs for low enough 
temperature. On the other hand, if bent configurations are favored, there is 
no phase transition. Analogous results are obtained for the hexagonal 
lattice, where we distinguish energetically between cis and trans isomerism 
of four bonded molecules. 

KEY W O R D S  : Polymer; hydrogen bond; phase transition; liquid crystals; 
zeros of partition function; lattice model; ferroelectric model; 16-vertex 
problem. 

1.  I N T R O D U C T I O N  

In a recent  paper ,  ~1~ r e fe r r ed  to  h e r e a f t e r  as I, we desc r ibed  a class o f  la t t ice  

m o d e l s  for  b ina ry  mix tu re s  wi th  s t ruc tu ra l  cons t ra in t s .  F o r  the  cha in  p o l y m e r  

m o d e l  on  a la t t ice  o r  g r a p h  any  ve r t ex  m a y  be lef t  u n o c c u p i e d  o r  c o v e r e d  wi th  

one  o r  at  m o s t  t w o  d imer s ,  a n d  in the  l a t t e r  case,  the  ve r t ex  ene rgy  is in- 

dependent o f  the  ang le  b e t w e e n  two  d imers .  E a c h  edge  m a y  be e m p t y  o r  

c o v e r e d  wi th  a s ingle d imer .  T h e  m o d e l  is thus  a na tu ra l  ex tens ion ,  in wh ich  
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the hard dimers are softened, of  the monomer-d imer  problem analyzed by 
Heilmann and Lieb. (2~ The main result established in I is that such systems 
cannot undergo phase transitions. This raises the intriguing possibility that a 
phase transition might be induced by allowing the vertex Boltzmann weights 
to depend on the angle between two contiguous dimers. On the square lattice, 
for instance, if  the "s t ra ight"  vertices are favored over the " b e n t "  ones, then 
one might have a phase transition with two coexisting states at low tempera- 
ture consisting of mainly straight polymers, the states being related by a 
rotation through ~r/2 radians. Possible physical applications might be found 
in liquid crystals ~3~ and in silicate structures. In the second section of this paper 
we shall establish rigorously the existence of such phase transitions by means 
of the Peierls argument with the reflection principle recently introduced by 
Heilmann. (4~ We have also shown that if the bent vertex configurations are 
favored, then there is no phase transition. This is reported in Section 3; it is an 
extension of the monomer-d imer  argument used in I. 

In Section 4 we consider the analogous features on the hexagonal lattice. 
Here we must consider the energies of  groups of three consecutive chains: I f  
the trans conformation is favored over eis, then there is a phase transition. 

2. THE 1 1 - V E R T E X  P R O B L E M  ON A S Q U A R E  LATTICE:  
PEIERLS" A R G U M E N T  

In the l 1-vertex problem only the subset shown in Fig. 1 of  the complete 
set of  16 vertices (5~ is allowed. Below each vertex the equivalent polymer 
configuration is given. The weight for a canonical ensemble with temperature 
T is given in terms of vertex energies ~ by 

60j = e - ~ ,  I~T (1) 
k being the Boltzmann constant. The model which we consider satisfies the 
obvious symmetry restrictions: 

OJ3 ~ 604 ~ W s  

605 = 606 = 607 = 608 = w~ (2) 
609 ~ ~z)10 ~ 6 O l l  ~ 6012  ~ W1 

Further, we take 

601 = 1 + z0 = Wo (3) 

(I) (3) (4) (5) (6) (7) (8) (9) (10) Cll) (12) 

+ + + + + + + + + + +  

Fig. 1. Allowed vertices and equivalent polymer configurations for the l 1-vertex 
problem. 
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Fig. 2. Ordered structures for the polymer model : 
(a) has all type 3 vertices, (b) has all type 4 ver- 
tices, except at the boundary. (a} 

, l i l l r  
l l i l l l l  

(b) 

where z0 is the monomer fugacity, and we have introduced the variable Wo 
for convenience. If  we take oJ2 = 0, then a generalization of the eight-vertex 
problem discussed by Baxter (6~ is obtained. Baxter's method apparently 
requires that col = o~2; our model has yet to be solved exactly. Several other 
modifications have been discussed in I. 

In this section we shall define a phase transition as an instability: The 
state of the system can be altered in the thermodynamic limit by a suitable 
adjustment of the limiting sequence of boundary configurations. This ap- 
proach is very well reviewed by Gallavotti(7~; the connection with analyticity 
properties, although established for the Ising ferromagnet with pair inter- 
actions, (8~ is not obvious here. 

The Peierls argument (9~ is particularly suitable to exploit the definition 
of phase transition given above. We now list the requirements for using its 
extension by Heilmann. (4~ 

1. There exist two possible ordered structures, denoted A and B, on the 
lattice A. The A structure has every vertical, but no horizontal, edge of A 
covered. The B structure is obtained mutatis mutandis as shown in Fig. 2. 

2. A method of drawing contours can be specified uniquely for a given 
polymer configuration on A. Each contour has a unique energy and the total 
energy of the system is a sum of contour energies; the contours do not 
interact. Such a method is summarized in Fig. 3, and an example is given in 
Fig. 4. 

The rules for drawing contours in the present case are actually analogous 
to the rules for drawing contours for the antiferromagnetic Ising model. (1~ 

(a) (b) (c) 

Fig. 3. Construction of contours for the Peierls' argument: The heavy lines indicate 
polymer segments and the light lines the associated contours on the edges of a square 
lattice based on the diagonal of A. 
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Fig. 4. A typical polymer structure. The light 
line shows the associated contours. 

To  see this (following Suzuki and Fisher~11~), one associates with each edge in 
our  model  an Ising spin which is up if the edge is covered with a bond and 
down if it is empty. These spins form a new square lattice with twice as many 
vertices as the original square lattice and it is easily seen that allowed con- 
figurations for the present case are a subset of  those allowed for the Ising 
model.  

Unlike the Ising case, the energy E(C) of  a contour  C depends on its 
shape, but we can obtain a lower bound  to this which is propor t ional  to the 
contour  l e n g t h / ( C ) ;  this suffices for the argument.  The unit o f  length for 
specification o f  l(C) is half  the diagonal o f  the unit square on A. We have 

E(c) > ~t(C) 
provided 

E = min{�88 - ea), �89 - ea), �89 - e3)} (4) 

The crux of  the argument  is to obtain a suitable upper  bound  on the 
probabil i ty p(C) that  an allowed contour  C can be found.  This can be done 
using the reflection principle o f  Hei lmann:  The reflection plane to be used is a 
diagonal  through the vertices o f  the square lattice A. For  further details the 
reader  is referred to the literature5 ~ 

We deduce the following theorem: The model  exhibits a phase transit ion 
in the sense o f  instability for/3 sufficiently large provided 

ws > wb, w~ > Wo, w~ > wl (5) 

Evidently, the present method may  be applied more  generally to the 16-vertex 
problem ~5,11~ to show the existence o f  a phase transition if vertices 3 and 4 are 
favored over all other vertices. This result supplements the earlier result by 
Brascamp et al. ~ who proved existence o f  a phase transition if vertices 5 and 
6 are favored over all other vertices. 
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3. A B S E N C E  OF P H A S E  T R A N S I T I O N :  A M O N O M E R - D I M E R  
A R G U M E N T  

Another  definition o f  a phase transit ion is that  there is a lack o f  analytic- 
ity in some of  the variables o f  the limiting free energy. We reiterate that this is 
not  necessarily the same as the {nstability definition exploited in Section 2. 
But it is well-adapted to the Yang-Lee  arguments  (13~ embodied  in the mono-  
mer -d imer  t reatment  (2~ used in I. These arguments  were restricted to the case 
w~ = wb, for which a phase transit ion is impossible. Here we show that  no 
phase transit ion can occur if ws ~< w~, which is to be contrasted with Eq. (5). 

The graph (or lattice) A is associated with a new graph A'  obtained by 
replacing each vertex o f  A by a city (14~ containing seven vertices, with edges 
as shown in Fig. 5. I f  we choose m o n o m e r  weights zero for the four  vertices in 
A' on which the external edges (the edges on A'  not  within a city) are incident 
and if an edge in A is covered by a dimer when the corresponding external 
edge in A'  is empty and vice versa, then each possible m o n o m e r - d i m e r  
covering of  A'  is associated uniquely with a polymer  configuration on A 
which is allowed according to the model.  

The edge weights (dimer weights) on the internal edges on A'  are as 
shown in Fig. 5; the external edges have weight one. The three internal vertices 
in a city have the m o n o m e r  weights given in the legend to Fig. 5. The polymer 
and m o n o m e r - d i m e r  grand parti t ion functions are identical, except for a 

b Q 

O Q 

b b 

Fig. 5. The city for constructing a monomer-dimer covering equivalent to the 11-vertex 
problem. The external edges are heavy lines; they have unit edge weight. The remaining 
edges have the weights shown. The vertices on which the external edges are incident have 
zero monomer weight. The two dotted vertices have weight m and the vertex marked | 
has monomer weight m'. 
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f a c t o r f p e r  vertex in A, provided that the parameters are related by 

wb = (a 2 + b2)m'f, w~ = 2abm' f  
(6) 

wl = (a + b)(u + mrn')f ,  Wo = (m'w + 2mu + m 2 m ' ) f  

Heilmann and Lieb ~2~ have shown that if the edge weights (a, b, u, and w) 
are real and positive, then the monomer-d imer  grand partition function does 
not vanish if the real parts of  the monomer  weights have the same sign 
(Re{m} > 0, Re{m'} > 0 or Re{m} < 0, Re{m'} < 0). 

It  follows from Eqs. (6) that it is possible to choose a, b, u, and w real and 
positive if w~, w~, wl, and w0 are real and positive and w~ ~< w,~. However, in 
order to discuss analyticity in the wj, we need to consider complex values of  
the wi, which can only be done if we allow complex values of  a and b. Un- 
fortunately, the general theorem 4.9 of  Ref. 2, which covers the case of  
complex edge weights, does not allow for some of the monomer  weights being 
zero. In the following we shall prove that the theorem can be extended to cover 
the present case. 

The problem when one wants to extend Theorem 4.9 of  Ref. 2 to the case 
where some monomer  weights are zero is to obtain a version of Theorem 4.5 
of  Ref. 2, which holds with these monomer  weights equal to zero. For this 
purpose we want to prove the following lemma. 

Lemma. There exists a constant A which only depends on the numerical 
value of the dimer weights, a, b, u, and w [Eq. (6)], such that the monomer -  
dimer partition function E(rn, m' ;  a, b, w, ulA' ) cannot be zero if 

Iml > A, Im'l > A (7) 

The constant A is a nonincreasing function of the numerical value of the 
dimer weights. 

P r o o f  o f  Lemma.  In the appendix of I, it was shown how a result due to 
Gruber  and Kunz ~15~ could be applied to the present type of polymer. As a 
first step one finds bounds on the sum of  the Boltzmann weights of  all poly- 
mers with given length and covering a fixed vertex. The contribution from 
linear polymers of  length n + 2 is bounded by 

41w~l=(lw~l + 21wd)" • (n + 2)/2, n /> 0 

while the contribution from closed polygons of length n + 2 is bounded by 

(Iws[ + 21w~l)", n i> 2 

The next step is to multiply the above contributions with ~:.+2 (~: > 0) 
and sum over n from 0 to oo; if ~ is chosen as 

~: -- ~/(Iwsl + 21wd) 
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with 

0 < 7 < 1  

then we obtain the following result for the sum: 

74 Iwll= 472 - 273 + - -  (8) 
s(~) = (Iw~t + 21wbl) 2 (1 - w)2 1 - 7 

Using the result by Gruber and Kunz, (14~ we find that the partition function 
is not zero if 

Iw01/> [1 + ~r 

When Eqs. (8) and (6) are substituted into this condition the following 
inequality obtains: 

Im'w + 2mu + m2m'[ If[ 

/> 2lm'l If[ ~ 1 + [a + bill u + mm'l 2 472 273 74 
4=21m'[ 2 (1 - 7) ~ + ~ (9) 

where 
= fa 2 + b2f + IabJ 

Rearranging the terms, one finds that the inequality (9) is implied by the 
following inequality: 

[m]2[m'[( 1 -  (127-~2[a+-b]2)-~7) 2 

(lul2 + 2lul Iml) 27/ - 7 2 la + b[ 2 
+ \lm'l  O --n-~ 

(10) 

A simple computation verifies that 

la + bl~/(la 2 + b~l + labl) < 2 

for all a and b. By choosing 7 sufficiently small [7 < �88 - V~)] one has 

1 - 2 7  - 72 [a  + b[__ . . . . . .~  2 > 0 
(1 - 7 )  2 

and one can easily verify the lemma from the inequality (10). 
Now, using the above lemma in place of Theorem 4.5, it is easy to go 

through the "Alternative Proof of Theorem 4.9" in Ref. 2 and convince 
oneself that Theorem 4.9 remains valid in the present case with the constant 
A from Eq. (17) entering as the constant A in Theorem 4.9 of Ref. 2. The 
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(a) (b) 
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Fig. 6. Three consecutive bonds forming (a) a cis configura- 
tion and (b) a trans configuration. 

important  conclusion which can be drawn from this theorem is that the free 
energy for the monomer-d imer  problem 

f ( m , m ' ; a , b , u , w ) =  lira 1 A.~o~ ~ log E(m, m ; a, b, u, w[A') (11) 

is jointly real-analytic in m, m', a, b, u, and w for positive values of all six 
variables. 

It follows from Eqs. (6) that if wb > ws and all four wj are real and 
positive, then the free energy for the polymer problem 

f (w~, wb, w:, Wo) = lim 1 ^4= [-~ log E(ws, wb, wl,  wolA) (12) 

is jointly real-analytic in w~, wb, Wl, and wo for positive values of  all four 
weights. 

4. C I S - T R A N S  I S O M E R I S M  O N  T H E  H E X A G O N A L  L A T T I C E  

On the hexagonal lattice all the valence angles are 120~ therefore, one 
does not have the possibility of  assigning different weights to different valence 
angles. In I we tried to let the weights depend on the directions of  the bonds. 
Here we shall choose the physically more interesting possibility of  distinguish- 
ing between cis configurations and trans configurations (see Fig. 6). 

On each vertex we allow the seven different configurations shown in 
Fig. 7. To vertex configuration 1, which has no bonds coming in, we attach 

(I) (2) (3) (4) 

1 I , 

( 5 )  (61 ( 7 )  
,, 

I 

Fig. 7. The seven allowed vertex configurations on the two sublattices of the hexagonal 
lattice (denoted A and B, respectively), together with the numbering of the vertex 
configurations. 
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(ca) (b) (c) 

Fig. 8. Three possible configurations on a small part of the hexagonal lanice. The 
Boltzmann weight of (a) is w~w~4w2BxcT; the Bollzmann weight of (b) is w~3w14wzSw~; 
the Bottzmann weight of (c) is w~~ 3. 

the weight w0; to the three configurations 2-4, with one bond, we attach the 
weight wl ; and to the three configurations 5-7, with two bonds, we attach the 
weight w2. Finally, for any pair of consecutive vertices in a polymer we 
include in the Boltzmann weight of  the configuration an extra factor Wc if the 
pair forms a cis configuration and an extra factor wt if the pair forms a trans 

configuration (see Fig. 8 for some examples). 
I f  the trans configuration is sufficiently favored over the other possibilities, 

one will expect to get long, stretched polymers all lined up in one of the three 
possible directions (Fig. 9). It is therefore natural in this case to look for a 
phase transition of the same type as the one encountered in Section 2. 

In order to apply Peierls' argument we start by defining the appropriate 
local structure. Here we have three possible ordered states, which we shall 
denote ~,/3, and 7. We shall define the local structure by the vertex configura- 
tion; configuration 5 corresponds to the ~ structure, configuration 6 corre- 
sponds to the/3 structure, and configuration 7 corresponds to the ~, structure. 
The remaining four configurations all correspond to disordered structures. 

We shall draw the segments of  the contours perpendicularly to the edges 
of  the hexagonal lattice from the midpoint of  a hexagon to the midpoint of  a 
neighboring hexagon. We shall draw a segment of a contour through an edge 
if either the edge goes between two vertices with different ordered structure or 
the edge is incident on at least one vertex with a disordered structure (see Fig. 
10). In order to make a one-to-one correspondence between the system of 
contours and the configuration, it is necessary to include with each contour 

Co) (b) (c) 

Fig. 9. The three different ordered structures resulting from favoring the trans con- 
figuration, 
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Fig. 10. A configuration of polymers on the hexagonal lattice and the associated 
contour.  

segment information on whether the edge which the piece of contour crosses 
is empty or covered by a bond. 

The next step is to estimate the number of ways of drawing a contour of 
given length. When a piece of contour is continued one can attach one, two, 

three, four, or five segments; this can be done in (51), (52), (~), (54), and (~) 

ways, respectively. We want to get a bound q on the number of ways per 
segment; this means that we want q to satisfy 

(~) + (~)/q+ (~)/q2+ ( ~ ) / q a +  (55)/q4 ~<q (13) 

o r  

[(1 + 1 / 0 )  5 - llq ~< q (14) 

This will be so if 
q = 20/3 (15) 

The factor ~7, which takes care of end effects, can in this case be chosen as 

= 6 / q  (16) 

since the first piece of contour can be chosen in six different directions. 
Finally, we have to include an extra factor of two per contour segment 

for the possibility of having the crossed edge either empty or covered. The 
bound on the number of ways to draw a contour of length N then becomes 
0.9(1 3])'/(2N). 

The shortest possible contour is obtained if we just take one bond out of 
an otherwise ordered structure (Fig. 1 1); this gives cr = 5. 

As the last step in the preparation for the use of Peierls' argument we 
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Fig. 11. The shortest contour. 

need a lower bound on the energy gained by removing a contour segment. 
Since we get one segment per cis configuration and at most three segments 
for each vertex with disordered structure, we have 

I~ = min{log(wt/wc), �89 log(wtw2/wl), �89 log(wtw2/wo)} (17) 

In this case with three ordered structures it is easiest to use rotation of 
120 ~ around an axis through a vertex as the symmetry operation which inter- 
changes the order structure, a possibility which is described in Section 5 of 
Ref. 4. 

From this we conclude that there exists a positive constant such that if 

fie - log(13�89 

is larger than this constant, then we will have the possibility of three different 
ordered states. 

One might alternatively have favored the cis configuration over the trans 
configuration. This would mean that the most stable polymer would be a 
hexamer forming a closed hexagon. Since the placement of hexagonal hexa- 
mers on the hexagonal lattice is equivalent to the nearest neighbor exclusion 
problem on the triangular lattice, a problem already treated by Heilmann (16~ 
and Heilmann and Prtestgaard, ~17) we can safely conclude that the favoring of 
the cis configuration will also lead to a phase transition. We shall not explore 
this further. 
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